Advanced Dry Grinding, Feeding & Injection Technologies for the Environment
Market Leadership
Co-Developer of Sodium Dry Injection Technology

- In the 90s, STM led the world in dry grinding for gas cleaning applications by co-developing a novel gas cleaning approach with a world-leading chemical supplier.

- This system is known today as Neutrec.

STM Serial No. 1.
Reggio Emilia, Italy
Market Leadership
Continuing R&D

‣ There is no company with more mills installed on Sodium-based gas cleaning systems.

‣ Today’s STM is regarded as the premier supplier for grinding Sodium Bicarbonate and Trona with the most advanced mill design.
Gas Cleaning Systems
Grinding, Dosing and Injection Product Range

Sorbent Reagent Systems

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BicarMill®</td>
<td>Full-feature Grinding Mill, Including Optional Soundproof Enclosure</td>
</tr>
<tr>
<td>JCF</td>
<td>Grinding Mill for Retrofit Applications</td>
</tr>
<tr>
<td>JCF-F</td>
<td>Grinding Mill with Single Filtration, Single Machine, 5 Injection Lines</td>
</tr>
<tr>
<td>Compact</td>
<td>Compact Mill, Simple and Economical</td>
</tr>
<tr>
<td>MF</td>
<td>In-Line Crusher/Delumper</td>
</tr>
</tbody>
</table>

Feeding & Injection Systems

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDS-AC</td>
<td>Micro-doser, Reagent Injection with Compressed Air</td>
</tr>
<tr>
<td>MDS-P</td>
<td>Micro-doser, Reagent Injection with Blower</td>
</tr>
<tr>
<td>MDS-VS</td>
<td>Micro-doser, Reagent Injection with Blower and Cross-flow Valve</td>
</tr>
<tr>
<td>MDD</td>
<td>Double Micro-doser</td>
</tr>
<tr>
<td>MDS-A</td>
<td>Micro-doser, Slurry Reagent Injection</td>
</tr>
<tr>
<td>BD</td>
<td>Distributor, Multi-outlet</td>
</tr>
</tbody>
</table>
STM Systems are Approved by Solvay

Summary:
We note that 90% of SOLVAir® clients are actually satisfied with the use of machinery produced by the following companies: (In alphabetical Order):

STM
Every customer of grinding systems planning on using SOLVAir® Solutions in a plant must contact one of these suppliers. SOLVAY underlines that its objective is not to promote one supplier over another. The final choice should be carried out by choosing, in all cases, the offering that is best suited to the characteristics of the project and to the expectations of the main contractor.

Note: Other suppliers recommended by SOLVAir® are NOT shown on this slide

The information contained in this document is given in good faith and by way of information at the time of publishing. SOLVAY does not engage its responsibility. The use of our products is for the treatment of flue gases, excluding all others uses and applications. The buyer is required to monitor and respect, in its sole liability, the conditions under which our products are stored and used in its territory, to provide all required information to the user, and to respect all existing patents and all regulations applicable to our products and to its activity.
Gas Cleaning Systems

Optimal System for Each Application

<table>
<thead>
<tr>
<th>Combustion Process</th>
<th>System Type and Typical Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grinding System</td>
</tr>
<tr>
<td></td>
<td>Technical Grade Sodium Bicarbonate</td>
</tr>
<tr>
<td></td>
<td>Trona</td>
</tr>
<tr>
<td></td>
<td>Activated Carbon</td>
</tr>
<tr>
<td></td>
<td>Ready to Use (Lime, Limestone, etc.)</td>
</tr>
<tr>
<td></td>
<td>Sodium Bicarbonate + Activated Carbon</td>
</tr>
<tr>
<td>Industrial and Hazardous Waste Incineration</td>
<td>•</td>
</tr>
<tr>
<td>Biomass</td>
<td>•</td>
</tr>
<tr>
<td>Cement</td>
<td>•</td>
</tr>
<tr>
<td>Power</td>
<td>•</td>
</tr>
<tr>
<td>Water Treatment</td>
<td>•</td>
</tr>
<tr>
<td>Metals Recovery Furnace</td>
<td>•</td>
</tr>
<tr>
<td>Cremation</td>
<td>•</td>
</tr>
<tr>
<td>General Combustion: Heavy Fuel Oil and Natural Gas</td>
<td>•</td>
</tr>
<tr>
<td>Municipal and Hospital Waste Incineration</td>
<td>•</td>
</tr>
<tr>
<td>Steel and Foundries</td>
<td>•</td>
</tr>
<tr>
<td>Glass</td>
<td>•</td>
</tr>
</tbody>
</table>
Emissions Reductions

Typical Reductions Possible Using Dry Scrubbing

<table>
<thead>
<tr>
<th>Capture Mechanism</th>
<th>Pollutant (mg/Nm3)</th>
<th>Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric Filter</td>
<td>Particulate (mg/Nm3)</td>
<td><1</td>
</tr>
<tr>
<td>Sodium Bicarbonate</td>
<td>HCl (mg/Nm3)</td>
<td><5</td>
</tr>
<tr>
<td></td>
<td>SOx (mg/Nm3)</td>
<td><2</td>
</tr>
<tr>
<td></td>
<td>NOx (mg/Nm3)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>HF (mg/Nm3)</td>
<td><4</td>
</tr>
<tr>
<td>Activated Carbon</td>
<td>Heavy Metals (mg/Nm3)</td>
<td><0.05</td>
</tr>
<tr>
<td></td>
<td>Dioxins/Furans (ng/Nm3)</td>
<td><0.05</td>
</tr>
<tr>
<td></td>
<td>Cadmium (mg/Nm3)</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Mercury (ng/Nm3)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Gas Cleaning Comparison

Characteristics of Various Methods

<table>
<thead>
<tr>
<th>Process</th>
<th>Sodium Sorbent</th>
<th>Carbon</th>
<th>Calcium Sorbent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent</td>
<td>Sodium Bicarbonate</td>
<td>Trona</td>
<td>Activated Carbon</td>
</tr>
<tr>
<td>Stoichiometric Ratio</td>
<td>1.2-1.4</td>
<td>1.8-2.5</td>
<td>Iodine Index 600-1050 mg/g</td>
</tr>
<tr>
<td>Gas Temperature</td>
<td>140-380 °C</td>
<td>140-380 °C</td>
<td>150-180 °C</td>
</tr>
<tr>
<td>Reaction Time</td>
<td>>2 Sec</td>
<td>>4 Sec</td>
<td>On Filter</td>
</tr>
<tr>
<td>Weight After Reaction</td>
<td>30% HCl 16% SO₂</td>
<td>30% HCl 16% SO₂</td>
<td>-</td>
</tr>
<tr>
<td>HCl Efficiency</td>
<td>>99%</td>
<td>>95%</td>
<td>-</td>
</tr>
<tr>
<td>HF Efficiency</td>
<td><5mg/Nm³</td>
<td><10mg/Nm³</td>
<td>-</td>
</tr>
<tr>
<td>SO₂ Efficiency</td>
<td>>98%</td>
<td>>90%</td>
<td>-</td>
</tr>
<tr>
<td>Heavy Metals Efficiency</td>
<td>-</td>
<td>-</td>
<td>Excellent</td>
</tr>
<tr>
<td>Dioxin/Furan Efficiency</td>
<td>-</td>
<td>-</td>
<td>Excellent</td>
</tr>
<tr>
<td>Waste Recyclability</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
STM Milling Systems
Hammermills for Gas Cleaning Applications
STM JCF Hammermill
The Basic JCF Design

- Full-feature classifying mill coupled to a transport air fan.
- Ideal for single-point gas cleaning plants and for retrofit applications.
- **Operational advantages:**
 - Maximum energy efficiency
 - Low noise emissions
 - Minimal maintenance needs
 - Compact, small space requirement
 - High reliability and quality
 - Ease of maintenance
Technical Data JCF Mills

Equipment Specifications and Capacity

<table>
<thead>
<tr>
<th>Model</th>
<th>Installed Power</th>
<th>Absorbed Power</th>
<th>Capacity*</th>
<th>Air Flow</th>
<th>Pressure</th>
<th>Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCF 300</td>
<td>18.4 kW</td>
<td>16.6 kW</td>
<td>10-250</td>
<td>800</td>
<td>500</td>
<td><75</td>
</tr>
<tr>
<td>JCF 400</td>
<td>29.2 kW</td>
<td>26.3 kW</td>
<td>40-450</td>
<td>1500</td>
<td>800</td>
<td><75</td>
</tr>
<tr>
<td>JCF 630</td>
<td>64.2 kW</td>
<td>57.8 kW</td>
<td>100-1000</td>
<td>2700</td>
<td>800</td>
<td><75</td>
</tr>
<tr>
<td>JCF 800</td>
<td>98.0 kW</td>
<td>88.2 kW</td>
<td>100-1400</td>
<td>4700</td>
<td>1000</td>
<td><75</td>
</tr>
<tr>
<td>JCF 1000</td>
<td>129.0 kW</td>
<td>116.1 kW</td>
<td>100-1800</td>
<td>6000</td>
<td>1000</td>
<td><75</td>
</tr>
<tr>
<td>JCF 1250</td>
<td>205.0 kW</td>
<td>188.7 kW</td>
<td>120-2925</td>
<td>9750</td>
<td>1000</td>
<td><75</td>
</tr>
<tr>
<td>JCF 1500</td>
<td>284.0 kW</td>
<td>261.2 kW</td>
<td>150-4050</td>
<td>13500</td>
<td>1000</td>
<td><75</td>
</tr>
</tbody>
</table>

*Capacities Stated for Sodium Bicarbonate
Operational Schematic
JCF/JCFF Mill
Airflow Schematic
JCF/JCFF Mill

Ambient Air

Sorbent Propulsion

Mill Exhaust
JCF 300 Compact Mill
Mill with Pneumatic Cylinder Removal Assist
JCF 400 Compact Mill
Mill with Pneumatic Cylinder Removal Assist
JCFF Indirect Injection Mill
JCFF Series Mill for Indirect Dosing

- Full-feature classifying mill coupled to a transport air fan and a filter/receiver.
- Ideal for complex gas cleaning plants with multiple injection points.
- Operational advantages:
 - Modular and flexible arrangement
 - Stockpile applications possible
 - Ideal for multi-injection points
 - Useable with multiple dosing systems
 - Replaces multiple mills for cost savings

JCFF Mill
A - Dosing System
B - Mill
C - Filter/Receiver
D - Suction Fan
Technical Data JCFF Mills

Equipment Specifications and Capacity

<table>
<thead>
<tr>
<th>Model</th>
<th>Installed Power</th>
<th>Absorbed Power</th>
<th>Capacity*</th>
<th>Air Flow</th>
<th>Pressure</th>
<th>Filter Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCFF 300</td>
<td>18.4</td>
<td>16.6</td>
<td>10-250</td>
<td>800</td>
<td>500</td>
<td>12</td>
</tr>
<tr>
<td>JCFF 400</td>
<td>29.2</td>
<td>26.3</td>
<td>40-450</td>
<td>1500</td>
<td>800</td>
<td>24</td>
</tr>
<tr>
<td>JCFF 630</td>
<td>64.2</td>
<td>57.8</td>
<td>100-1000</td>
<td>2700</td>
<td>800</td>
<td>30</td>
</tr>
<tr>
<td>JCFF 800</td>
<td>98.0</td>
<td>88.2</td>
<td>100-1400</td>
<td>4700</td>
<td>1000</td>
<td>55</td>
</tr>
<tr>
<td>JCFF 1000</td>
<td>129.0</td>
<td>116.1</td>
<td>100-1800</td>
<td>6000</td>
<td>1000</td>
<td>91</td>
</tr>
<tr>
<td>JCFF 1250</td>
<td>205.0</td>
<td>188.7</td>
<td>120-2925</td>
<td>9750</td>
<td>1000</td>
<td>148</td>
</tr>
<tr>
<td>JCFF 1500</td>
<td>284.0</td>
<td>261.2</td>
<td>150-4050</td>
<td>13500</td>
<td>1000</td>
<td>205</td>
</tr>
</tbody>
</table>

**Larger Capacities Available For Large Installations

*Capacities Stated for Sodium Bicarbonate**
JCFF Indirect Injection
JCFF Series Mill with Multiple Dosing Units

JCFF w/Multiple Dosers
A - Dosing System
B - Mill
C - Filter/Receiver
D - Suction Fan
E - Rotary Valve
F - Double Dosing System
G - Eductor Venturi
H - Regenerative Blower
I - Mill to Filter Duct
L - Filter to Fan Duct
M - Air Recycle Loop
N - Injection Point Piping
JCF 630 Compact Mill
Mill with Pneumatic Cylinder Removal Assist
Mill Closed
JCF 630 Compact Mill
Mill with Pneumatic Cylinder Removal Assist
Mill Open
STM BicarMill Technology

Enclosed Compact Mill with 8400 Hour Online Guarantee

‣ Full-feature classifying mill coupled to a transport air fan, complete with custom enclosure and controller.

‣ Guaranteed online operation without stopping for a minimum of 8400 hours.

‣ Operational advantages:
 ‣ Packaged machine installation
 ‣ Lowest noise emissions
 ‣ Automatic operation
 ‣ Low maintenance - all external access
 ‣ High reliability and quality
 ‣ Optional remote alarming feature

BicarMill
Features of BicarMill
Packaged Bicarbonate Hammermill

Automatic Build-up Control
8400 Hour Non-Stop GUARANTEE

Auto-greasing Operation

Built-in Airflow Sensor
Built-in Vibration Sensor
Built-in Temperature Sensor
Technical Data BicarMill

Equipment Specifications and Capacity

<table>
<thead>
<tr>
<th>Model</th>
<th>Type/Size</th>
<th>Installed Power</th>
<th>Absorbed Power</th>
<th>Capacity*</th>
<th>Air Flow</th>
<th>Pressure</th>
<th>Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>BicarMill 300</td>
<td>18.4 kW</td>
<td>16.6 kW</td>
<td>10-250 Range kg/h</td>
<td>800 m³/h</td>
<td>500 mm H₂O</td>
<td><65 dbA</td>
<td></td>
</tr>
<tr>
<td>BicarMill 400</td>
<td>29.2 kW</td>
<td>26.3 kW</td>
<td>40-450 Range kg/h</td>
<td>1500 m³/h</td>
<td>800 mm H₂O</td>
<td><65 dbA</td>
<td></td>
</tr>
<tr>
<td>BicarMill 630</td>
<td>64.2 kW</td>
<td>57.8 kW</td>
<td>100-1000 Range kg/h</td>
<td>2700 m³/h</td>
<td>800 mm H₂O</td>
<td><65 dbA</td>
<td></td>
</tr>
</tbody>
</table>

Ccapacities Stated for Sodium Bicarbonate
BicarMill 630
Packaged Mill with Automatic Control System
BicarMill 630
Internal View of Doser and Mill with Pneumatic Open Assist
BicarMill Installation

Typical Installation on Dry Injection System
BicarMill Installation
Dual System on Dry Injection System
STM Compact Mill
Self-classifying, Compact Design

- Compact, self-classifying mill coupled to a transport air fan. The self-classifying design makes it a good choice for applications where particle size is not critical or where sorbent stoichiometry or acid gas efficiency requirements are low.

- Ideal for medium/small gas cleaning plants and for low-cost retrofit applications.

- Operational advantages:
 - Low energy consumption
 - Minimal maintenance needs
 - Compact, small space requirement
 - Ease of installation
 - Automatic operation
Technical Data CompactMill

Equipment Specifications and Capacity

<table>
<thead>
<tr>
<th>Model Type/Size</th>
<th>Installed Power</th>
<th>Absorbed Power</th>
<th>Capacity*</th>
<th>Air Flow</th>
<th>Pressure</th>
<th>Energy Req.</th>
<th>Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact 280</td>
<td>18.4 kW</td>
<td>14.8 kW</td>
<td>5-40 kg/h</td>
<td>800 m³/h</td>
<td>500 mm H₂O</td>
<td>60-100 kW/Ton</td>
<td><75 dbA</td>
</tr>
<tr>
<td>Compact 400</td>
<td>29.2 kW</td>
<td>23.5 kW</td>
<td>10-120 kg/h</td>
<td>1500 m³/h</td>
<td>800 mm H₂O</td>
<td>55-85 kW/Ton</td>
<td><75 dbA</td>
</tr>
<tr>
<td>Compact 600</td>
<td>64.2 kW</td>
<td>51.5 kW</td>
<td>20-450 kg/h</td>
<td>2700 m³/h</td>
<td>800 mm H₂O</td>
<td>52-85 kW/Ton</td>
<td><75 dbA</td>
</tr>
</tbody>
</table>

Capacities Stated for Sodium Bicarbonate
Compact Mill
Self-classifying, Compact Design

Compact Mill 600
Compact Mill - EasyBox
Enclosed Compact Mill with Doser
Compact Mill - EasyBox
Enclosed Compact Mill with Doser

Compact 400 Easy Box Showing Internals
Compact Mill - EasyBox
Enclosed Compact Mill with Doser

Compact 400 Easy Box Showing Internals
MF Lump Breaker/Crusher
In-line Material Crusher with Online Maintenance

▪ Compact, in-line clinker crusher/delumper with online maintenance capabilities.

▪ Capable of crushing a full-size clinkers down to 1” particles.

▪ Can be installed upstream of dust airlocks and conveying systems in boiler and just collector applications.

▪ Operational advantages:
 ▪ Low energy consumption
 ▪ Inline maintenance - no need for removal
 ▪ Compact, small space requirement
 ▪ Ease of installation
 ▪ Heavy-duty construction

MF Series Lump Breaker
MF Lump Breaker/Crusher
In-line Material Crusher with Online Maintenance

Unit Deactivated for Maintenance

Unit Online and Operational
STM Dosing Systems
Metering Feeders for Gas Cleaning Applications
STM MicroDoser Technology
High-Accuracy Powder Metering Systems

‣ Solves the problem of accurately metering free-flowing powders by monitoring the flow of sorbents and activated carbon into the gas stream.

‣ Can be used for any application that uses powders, such as dry scrubbers and duct injection systems.

‣ Accuracy twice that of competitive commercial units.

‣ Operational advantages:
 ‣ Maximum energy efficiency
 ‣ High accuracy
 ‣ Minimal maintenance needs
 ‣ Compact, small space requirement
 ‣ High reliability and quality
 ‣ Ease of installation

Micro-Dosing Unit
Volumetric Components
Elements of Our Metering Systems

- Modular dosing system elements allow the interchange of different elements to achieve different injection rates
- Variation of the dosing screw design based on the type of material being metered:
 - **Type A**: Solid metering screw for non-compressible, high specific gravity material
 - **Type B**: Open (spring) metering screw for compressible, low specific gravity material
Control Components

Elements of Our Metering Systems

Surge Hopper Level Sensor

High-accuracy Gear Reducer

Transport Air Flow Meter and Pressure Transducer

Weight Scale With Vibrator

8400 Hour Non-Stop GUARANTEE

Integral Air Preparation Unit
MDS MicroDoser

Simple Metering System

MDS Doser
1 - Dosing Housing
2 - Hopper
3 - Inlet Feed Port
4 - Metering Port Exhaust
5 - Metering Screw
6 - Level Sensor
7 - Doser Gear Reducer
8 - Agitator Gear Reducer
9 - Vibrator
10 - Agitator Element

Micro-Dosing Unit
MD-AC MicroDoser
Compressed Air Propelled Metering Systems

Compressed Air Micro-Dosing Unit

MD-AC Doser
1 - Dosing Housing
2 - Hopper
3 - Inlet Feed Port
4 - Metering Port Exhaust
5 - Metering Screw
6 - Level Sensor
7 - Doser Gear Reducer
8 - Agitator Gear Reducer
9 - Vibrator
10 - Agitator Element
11 - Vibrating Fork Level Sensor
12 - Surge Hopper
13 - Eductor Venturi
14 - Pressure Transmitter
15 - Weighing System
16 - Air Preparation Station
17 - System Platform
MD-AC Doser Schematic
Compressed Air Propelled Metering System Material Flow

Material Inlet

Surge Hopper

Transport Pipe

Weigh Scale

Venturi Eductor
Propulsion Components

Elements of MD-AC Metering Systems

- Surge Hopper
- Venturi Eductor
- Compressed Air
- Level Sensor
- Pressure Sensor
- Anti-plugging Pressure Sensor
- Stainless Steel Transport Pipe
- Anti-abrasion Tube
MD-P MicroDoser
Blower Propelled Metering Systems

MD-P Doser
1 - Dosing Housing
2 - Hopper
3 - Inlet Feed Port
4 - Metering Port Exhaust
5 - Metering Screw
6 - Level Sensor
7 - Doser Gear Reducer
8 - Agitator Gear Reducer
9 - Vibrator
10 - Agitator Element
11 - Vibrating Fork Level Sensor
12 - Surge Hopper
13 - Eductor Venturi
14 - Pressure Transmitter
15 - Weighing System
16 - Air Preparation Station
17 - System Platform
18 - Blower

Blower Propelled Micro-Dosing Unit
MD-P Doser Schematic
Blower Propelled Metering System Material Flow
Propulsion Components

Elements of MD-P Metering Systems

- Surge Hopper
- Level Sensor
- Anti-plugging Pressure Sensor
- Stainless Steel Transport Pipe and Anti-abrasion Tube
- Venturi Eductor
- Blower
MD-VS MicroDoser
Flow-through Valve Metering Systems

MD-VS Doser
1 - Dosing Housing
2 - Hopper
3 - Inlet Feed Port
4 - Metering Port Exhaust
5 - Metering Screw
6 - Level Sensor
7 - Doser Gear Reducer
8 - Agitator Gear Reducer
9 - Vibrator
10 - Agitator Element
11 - Vibrating Fork Level Sensor
12 - Surge Hopper
13 - Eductor Venturi
14 - Pressure Transmitter
15 - Weighing System
16 - Air Preparation Station
17 - System Platform
18 - Cross-flow Metering Valve
19 - Blower

Blower Propelled - Flow-through Valve - Micro-Dosing Unit
MD-VS Doser Schematic

Flow-through Valve Metering System Material Flow

- Material Inlet
- Surge Hopper
- Flow-through Valve
- Weigh Scale
- Transport Pipe
Propulsion Components

Elements of MD-VS Metering Systems

- Flow-through Rotary Valve
- Level Sensor
- Surge Hopper
- Stainless Steel Transport Pipe and Anti-abrasion Tube
- Flow-through Rotary Valve
- Blower
MD-D MicroDoser

Double Metering Systems

MD-D Doser
1 - Dosing Housing
2 - Hopper
3 - Inlet Feed Port
4 - Metering Port Exhaust
5 - Metering Screw
6 - Level Sensor
7 - Doser Gear Reducer
8 - Agitator Gear Reducer
9 - Vibrator
10 - Agitator Element
11 - Vibrating Fork Level Sensor
12 - Surge Hopper
13 - Eductor Venturi
14 - Pressure Transmitter
15 - Weighing System
16 - Air Preparation Station
17 - System Platform

Dual Micro-Dosing Unit
MD-D Dual Doser Schematic
Double Metering System Material Flow

Material Inlet

System 1
System 2
MD-A MicroDoser
Water Propelled, Slurry Mixing Metering Systems

Water Propelled Micro-Dosing Unit

High-pressure Pump

Peristaltic Pump

MicroDoser Venturi
MD-A MicroDoser
Water Propelled, Slurry Mixing Metering Systems
MD-AC 50 Doser
Compressed Air Propelled Metering System
MD-AC-TX-ATEX Doser
Compressed Air Propelled Metering System
Teflon Coated and ATEX Components
MDS-P + FIBC Unloader ATEX

Big Bag Unloader and Metering System
Teflon Coated and ATEX Components
MD-D MicroDoser
Double Metering Systems

Dual Micro-Dosing Unit
MDS-AC Doser
Compressed Air Metering System
MDS-VS Doser
Compressed Air Metering System
Material Distribution Systems
Multi-Outlet Material Distributors
Material Distribution Systems
Multi-Outlet Material Distributors

‣ Solves the problem of discharging and distributing hard to flow material from a single silo to multiple points.

‣ Design is adaptable to the number and location of outlets, as well as the speed of the material extraction.

‣ Operational advantages:
 ‣ Modular design
 ‣ Optimal material distribution
 ‣ Multiple outlets with single silo
 ‣ Ideal for hard to handle powders
 ‣ Minimal maintenance needs
 ‣ Compact, small space requirement
 ‣ High reliability and quality
 ‣ Ease of installation
Material Distribution Systems
Multi-Outlet Material Distributors

Cutaway View of a 4-Outlet Material Distributor
Example Application of a 2-Outlet Material Distributor